Parabolic induction via the parabolic pro-???? Iwahori–Hecke algebra

نویسندگان

چکیده

Let $\mathbf{G}$ be a connected reductive group defined over locally compact non-archimedean field $F$, let $\mathbf{P}$ parabolic subgroup with Levi $\mathbf{M}$ and compatible pro-$p$ Iwahori of $G := \mathbf{G}(F)$. $R$ commutative unital ring. We introduce the Iwahori--Hecke $R$-algebra $\mathcal{H}_R(P)$ $P \mathbf{P}(F)$ construct two morphisms $\Theta^P_M\colon \mathcal{H}_R(P)\to \mathcal{H}_R(M)$ $\Xi^P_G\colon \mathcal{H}_R(P) \to \mathcal{H}_R(G)$ into $M \mathbf{M}(F)$ $G$, respectively. prove that resulting functor Mod-$\mathcal{H}_R(M) \to$ Mod-$\mathcal{H}_R(G)$ from category right $\mathcal{H}_R(M)$-modules to $\mathcal{H}_R(G)$-modules (obtained by pulling back via $\Theta^P_M$ extension scalars along $\Xi^P_G$) coincides induction due Ollivier--Vign\'eras. The maps $\Xi^P_G$ factor through common subalgebra $\mathcal{H}_R(M,G)$ $\mathcal{H}_R(G)$ which is very similar $\mathcal{H}_R(M)$. Studying these algebras for varying $(M,G)$ we transitivity property tensor products. As an application give new proof induction.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Jacquet modules of parabolic induction

In this paper we study the some generalization of Jacquet modules of parabolic induction and construct a filtration on it. The successive quotient of the filtration is written by using the twisting functor.

متن کامل

Quasilinear parabolic problems via maximal regularity

We use maximal Lp regularity to study quasilinear parabolic evolution equations. In contrast to all previous work we only assume that the nonlinearities are defined on the space in which the solution is sought for. It is shown that there exists a unique maximal solution depending continuously on all data, and criteria for global existence are given as well. These general results possess numerou...

متن کامل

Parabolic starlike mappings of the unit ball $B^n$

Let $f$ be a locally univalent function on the unit disk $U$. We consider the normalized extensions of $f$ to the Euclidean unit ball $B^nsubseteqmathbb{C}^n$ given by $$Phi_{n,gamma}(f)(z)=left(f(z_1),(f'(z_1))^gammahat{z}right),$$  where $gammain[0,1/2]$, $z=(z_1,hat{z})in B^n$ and $$Psi_{n,beta}(f)(z)=left(f(z_1),(frac{f(z_1)}{z_1})^betahat{z}right),$$ in which $betain[0,1]$, $f(z_1)neq 0$ a...

متن کامل

The Structure of Two-parabolic Space: Parabolic Dust and Iteration

A non-elementary Möbius group generated by twoparabolics is determined up to conjugation by one complex parameter and the parameter space has been extensively studied. In this paper, we use the results of [7] to obtain an additional structure for the parameter space, which we term the two-parabolic space. This structure allows us to identify groups that contain additional conjugacy classes of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Representation Theory of The American Mathematical Society

سال: 2021

ISSN: ['1088-4165']

DOI: https://doi.org/10.1090/ert/585